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Optic models for short-pitch cholesteric and chiral smectic liquid crystals
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The optical properties of cholesteric and chiral sme€tiiquid crystals having a pitch shorter than the light
wavelength are studied, both theoretically and experimentally. A particular emphasis is placed on the optical
activity. For smectics, the optical rotation is maximum for a tilt angle of 45° and for light propagating
orthogonally to the helix axis; for short-pitch cholesterics, the optical activity is, in any case, very small. The
limits of validity of a recently proposed macroscopic model for such media are discussed, in the framework of
a more general discussion on optical models for gyrotropic media. It is shown that the macroscopic models
generally work well for the bulk properties. However, for chiral smectics with the smectic planes parallel or
nearly parallel to the boundary planes, no homogeneous model is able to account for the gyrotropic properties,
independently of how small the pitch is and for any sample thickness. Our experimental data are in agreement
with these theoretical findinggS1063-651X98)05509-3

PACS numbgs): 61.30-v, 78.20.Ek, 78.20.Bh

I. INTRODUCTION equations, relating the vectoEs D, B, andH, and defining
the macroscopic properties of the medium. A surprisingly
In most liquid crystaLC) compounds the molecules are large number of constitutive equations are indeed found in
strongly elongated, and some periodic LC phases are knowthe literature and actually used. This fact is perhaps the main

where the average direction(nematic directorof the long  source of confusion for nonspecialistand for specialists
molecular axes rotates uniformly along a given direction,t00). For a review, see Reff4—6.
describing a helix. If the helix pitch is smaller than the light ~ (2) A more substantial difficulty comes from the fact that
wavelength, the periodic medium can be convenientlyoptical activity is a nonlocal property, depending explicitly
treated in optics as macroscopically homogeneous, as usu@ the molecular siza. In particular, the circular birefrin-
for crystals. Recently, a macroscopic optical model for shortgence of isotropic medigwhich is proportional to the optical
pitch chiral smecticS liquid crystals §¢) has been sug- rotation along a path of one wavelengtales as/\, as
gested 1], which also is valid for other LC phases having the first recognized by Boltzmar{7] on the basis of a molecular
sameC, element of symmetry§*, S, andS%), and in- model. The optical rotation per unit !ength, i.e., the rotatory
cludes as a particular case the cholesteN& X phase. The POWer, scales therefore ag\?. The higher order powers of
macroscopic effective medium is uniaxial, with the optic axisth® Boltzmann ratica/A are generally negligible, sinca
along the helix axis of the periodic structure, and is optically<\- For anisotropic media the nonlocality of the dielectric
active. properties gives rise to spatial dispersion, namely, to the de-
Here, a critical discussion of the model is given. It will be Péndence of the gyrotropic parameters on both the modulus
shown that with minor changes concerning its constitutivednd the direction of the light wave vector. The usual fre-
equations, the model can be successfully applied to the act@lency dispersion, which is neglected here for the sake of
ally available short-pitctN* andS¥ compounds, except for Simplicity, gives an additionak dependence to the simple
some very particular optical geometries. This fact could itsel®/\” law for the rotatory power.
motivate our investigations, owing to the increasing interest For gyrotropic crystals we have a further characteristic
of such compounds in applicatiof,3]. However, our main length, namely, the spatial periodicigy and hence a contri-
motivation goes beyond the optics of LCs and refers to basibution scaling ap/\ can appear. For the actually available
optics. In fact, the search of a macroscopic model for optichiral smectics, this contribution is dominant, singe- a,
cally active crystals is still an open problem, since this prop-and the higher order powers of the Boltzmann ratia play
erty is hardly incorporated in the framework of homoge-a non-negligible role. For the helical-shaped LC phases an
neous models, in particular for crystals with a long rangeoptical model is universally used where the molecular struc-
order. Here we recall some of the difficulties found in anyture is neglected and the optical properties are defined by
macroscopic description of optical activity. means of a local dielectric tense(r). Since we consider
(1) A first difficulty comes from the fact that optical ac- only short-pitch compounds, this model plays in our theory
tivity is only displayed by dissymmetri@hiral) objects. The the role of amesoscopic model
models used to represent optical activity are therefore rather (3) For periodic media the main difficulty comes from the
complicated and require heavy numerical computations. Théact that the eigenwaves within the medium are Bloch waves,
different molecular models suggested different constitutivevhose Fourier components represent plane waves having
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wave vectorsk+q, whereq is a vector of the reciprocal ~ The magnetic polarizability of actually available com-
lattice. A macroscopic model is obtained by considering onlypounds is negligibly small, whereas their local biaxiality and
the zeroth-order Fourier component and neglecting the efgyrotropy are in general non-negligible, having the same or-
fects of the higher order ones. Unfortunately, the amplitudeder of magnitude as for usual crystals. However, their influ-
of the neglected components is not negligible for actual cryseénce on the optical properties of the smectic samples consid-
tals [8,9]. Despite this fact, no experimental evidence of aered here is very small. The intrinsic optical activigpming
possible role of the neglected Fourier components has bedfpm the chirality of the individual moleculggives non-
found to date. To explain this, we recall that the higher ordenegligible effects only in the limit where the pitch becomes
Fourier components give rise to a fine structure of the eleccomparable to the atomic size. Even in this limit, it is inter-
tromagnetic field within the crystal cells, which often hasesting to find out and discuss the optical activity coming
negligible influence on optical experiments, where only arfrom the helical arrangement of the molecules.
average(macroscopigfield is of interest.

The above quoted problems are well known and have B. Landau-type constitutive equations
been discussed for a long time in the literat(see, for in- for the macroscopic model
stance, Refd.8,9]). We approach here the same problems on
the basis of the fact that a mesoscopic and a macroscopj
model for the same medium are now available, both define patial dispersion, by making use of the Landau-Lifshitz for-
by fully analytic and very S."”!p'e constitutive equations. AS i [10]. For harmonic plane waves the constitutive
far as we know, nothing similar can be found in the litera- ; :

. . : “"equations are written as

ture, at least for gyrotropic media, and all the previous dis-

A macroscopic model for short-pitch chiral smectics has
en derived in Refl1] in the framework of the theory of

cussions concerning the limits of validity of macroscopic D=7z¢,E, (3a)
models are based on qualitative or semiquantitative argu- =
ments. Here we give, instead, a fully quantitative analysis. B=puoH, (3b)

Our attention will be concentrated on the possible failure of _ ~

the macroscopic homogeneous madsbnsidering as exact where the vectorg, D, B, andH are the effective values of
the mesoscopimne (periodig. As already stated, in some the fields. In a perturbation expansion where only linear
particular geometries strong discrepancies are indeed founterms of the parameteks: and p/\ are considered, the ef-
In all these cases our experiments confirm the full validity offective permittivity tensor is given by

the mesoscopic model.

g, 0 0 0 0 -m,
Il. THE MODELS pa 0 £, 0 +ig, 0 0 my . (@)
A. Mesoscopic model = 0 0 3, m, —-m, O
In the mesoscopic model, the chiral smectic is assumed to
be a continuous periodic medium that is locally uniaxial, yhere
nonmagnetic, and nongyrotropic. The optic axis is parallel to 5 5 ~
the nematic directom, which is uniformly rotating along in £e=6ot €, COSa, &o=80(1+ec/e,)/2, 5
such a way that its components are given by )
P €4 .
Ny=sin a cogqz+ ¢o), 9.7~ ngmz(Za), ©)
e
ny=sin a sin(qz+ ¢y), (1) andm=k/ky, wherek is the wave vector of the considered
plane wave within the samplé&k,=2x/\, and \ is the
n,=cos«a, vacuum wavelength. The fact thatexplicitly depends ork

means that the medium displays spatial dispersion.
where « is the tilt angle,q=2#/p, and the phase constant  The effective homogeneous medium defined by E4js-
@, defines the direction ai at the planez=0, which in our  (6) is uniaxial and its optic axis is coincident with the helix
experiments is considered as the first boundary of thewxis. The real part of the permittivity tenserdisplays the
sample. In the two limiting cases=0 anda=m/2 we ob-  typical structure of uniaxial media with only two scalar pa-
tain a nongyrotropic homageneous medium and a ChOIGSter‘%lmetersge ands,. A similar behavior is in general exhib-
liquid cryst.al, respecuyely. . ited by the imaginary part of uniaxial gyrotropic medand
The optical properties of the mesoscopic model are fuIIymore precisely by the crystal class@s, D, with n>2)
defined by the real dielectric tensor - ron ’
with two parameterg) andg, related to the components of
“ the vectork parallel and orthogonal to the optic axis, respec-
e=g,t&an(2)N(2), (2)  tively. The absence ah,=k,/k, in Eq. (4) means that, for
what concerns the considered homogeneous model, the par-
where €a is the local dielectric anisotropy, defined as thea||e| Componeng” is equa| to zero. The optica| activity is
differencee.—&, between the principal values @f. The  thus zero for light propagating along the helix axis and
components of the tensei(z) are periodic functions oz, reaches its maximum value for light propagatioghogo-
with period equal to the helix pitch. nally to the helix axis
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The gyrotropy parametey, is maximum fora=45°, and  losses, the permittivitg is real and symmetric. The optical
zero fora=0° anda=90°. Within the approximation of the activity of gyrotropic lossless media is therefore related to

zero, since their tilt angle is exactly 90°. which in this case is complex and Hermitian. The bulk con-
stitutive Eq.(7), in contrast to Eqs(3), are self-consistent
C. Post-type constitutive equations with the usual assumptions of continuity for the components

The constitutive equation®) are indeed very simple, but of the vectors, E, D, andH (tangential continuity foE and
their simplicity has rather heavy counterparts. In particular! @nd normal continuity foB andD).
within gyrotropic media a new term must be addedBo
X H to obtain a Poynting vectos having the meaning of
power flux density[11,12. The continuity of the normal

component of this vector at the sample boundaries implies a . i
To test the validity of the macroscopic model, we have

discontinuity of the tangential components of the field vec- . .
tors E or H. New boundary-type equations are therefore reonsidered the transmittance and the reflectance of a LC slab

quired to fully define the optical properties of the sample. confined between two parallgl planes, and cor_npared the V‘.al'
A discontinuity of B [and, from Eq.(3b), also ofH] im- ues given by the macroscopic and mesoscopic models, with
plies the presence of a surface density curjenfThe pres- particular attention to the polarization properties related to

ence of such a current, related to a bulk magnetizatonis the optical activity. For the mesoscopic model, we have con-

strongly suggested by the fact that within any dielectric helixSiderIed sar;:ples with the helix axis(;)rthog(;nal tf)hthﬁ bﬁund-
the polarization current gives rise to a magnetic dipole mody P aneghomeotropic geometpyand samples with the he-

ment. The simplicity of the Landau formalism is due to thelt')x axdls parlallel OL obllquel_y oriented with r:esfpect to the
fact that the magnetization currepy=V XM is incorpo- ounaary panesp ase grating geomebrylnt e first case,

. . . ~ o the periodic structure can be considered as an anisotropic
rated into the main currerjb=dP/dt. In the bulk, this is

. : ) ) stratified medium and the computations are performed by
always allowed, since MaxweILs equations remain “”'making use of the basic Berreman formali§isd]. In the
changed under the transformatioR/dt=9P/dt+V XM, if  other cases, an extended Berreman formalism, developed to
we accordingly define new vectoksandD. Obviously, this  find out the efficiencies of anisotropic gratingks,16, has
transformation gives a different set of constitutive equationsbeen used. Fop>A\ the structure indeed acts as a phase
One of the difficulties quoted in the Introduction is related tograting, giving rise to diffracted beams. By decreasing the
this fact, namely, to the difficulty in separating the effects ofpitch, the diffraction angle of the higher order diffracted
dPIat andV X M. waves increases, and when the angle reaches 90° these

A possible way to escape the above difficulty is to imposewaves become evanescent. For small enqugfalues only

the continuity of the Poynting vector at the boundary surfacethe zeroth-order transmitted and reflected beams survive.
It is, however, preferable to make use of a different set oHowever, the presence of evanescent waves cannot be ne-
constitutive equations. In the following we make use of theglected in computations.

equations derived by Pofst3] under the requirement of rela-  The most important discrepancies between the mesos-
tivistic covariance of all the equations used to describe theopic and macroscopic models are related to boundary type
electromagnetic field, without using any microscopic mod-effects and will be considered in Sec. IV. In this section we
els. For nonmagnetic lossless materials the Post equatiomensider some bulk effects, related to the fact that our mac-

Ill. VALIDITY LIMITS OF THE MACROSCOPIC MODEL:
BULK EFFECTS

can be written as roscopic model neglects higher order termgiih ande,.

We recall that gyrotropic crystals display pure optical ro-

D:§80E+§8005v (78 tation only for light propagating along the optic axis. In any

. . other direction the medium transforms linear into elliptic po-

H=—x'goCE+ o "B. (70 Jarization, but the presence of the gyrotropy has only small

, effects on most optical properties.

In the bulk, the equation systen8) and (7) become Let us first consider the case of a light beam parallel to the
equivalent by assuming optic axis. The macroscopic model does not give optical ro-

tation, sinceg;=0. This property is quite unexpected, since

= 2
i‘i"'i ' @ o p>\, cholesterics and chiral smectic LCs display a huge
) pseudorotatory power for light propagating along to the helix
= IZ’ (8b) axis, according to de Vries’ equatiofis7]. A residual circu-

X
B lar birefringence for light propagating along the helix axis
where survives forp<A, but it decreases quickly by decreasing the
ratio p/\. More precisely, the rotatory power along the helix

000 decreases two orders of magnitude if the internal wavelength
rR=| 0 0 O 9) changes fronp (namely at the Bragg reflection band 2p.
— i i _4
= 00 g, For higher\ values, it decreases as “, and becomes neg-

ligible to any practical purpose fax>5p. In the limit p
_ <\, the quantityg; is in any case not exactly zero, but
For nonchiral mediay=0 ande=¢. The two sets of scales asy/\)3.
equations then become identical, and in the absence of To test the effects off, , we must consider light beams
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FIG. 2. Rotation anglesa) and axes ratiogh) for the same
optical geometry of Fig. 1, as a function of the normalized sample
thickness, for the periodic mediu(aolid line) and its homogeneous
model (dotted ling, for «=30°, p=\/3, and TM input polariza-

axes ratio

tion.

cular dichroism around an absorption linét lower p val-

ues, our computations suggest that the first neglected term in
the expression ofy, is the one scaling asp(\)3, which
gives again negligible effects fgr<<i/5.

FIG. 1. Rotation angles of the major axis of the output elliptic
polarization for normally incident light linearly polarized alofa)
and orthogonally(b) to the helix axis, and corresponding ratios
between the intensity along the minor and the major axes of the

ellipse[(c) and (d)], for the helical periodic mediungsolid lineg In the following we will consider two types of boundary
and for its macroscopic modédlotted lineg. The sample is in the  o¢ra 0t having different origins.

g(ating mode geometrihelix E.iXiS parallel to the bounda}ry planes (a) Matter is intrinsically discontinuous and a sample has
with ilt angle «=45° and thicknessl=2\. Here, and in all the o0 5 gefined “boundary surface.” This is a trivial obser-
subsequent figures, the principal refractive indicesnare1.66 and vation, but must not be neglected at least for what concerns a
No=15. nonlocal property as optical activity. In our macroscopic de-

. ] . _ scription it is convenient to define a thin boundary “transi-
orthogonal or obliquely oriented with respect to the opticijon Jayer” where the optical properties are changing gradu-
axis. These cases require a more complex analysis. We haygy,
of the transmitted and reflected beams for linear input polare higher order Fourier components of the Bloch waves,
ization. Only for thin enough samples the polarization of theywhose effects are in principle very long ranged and cannot be
transmitted beam is nearly linear and the rotation of the maaccounted for by simply considering a thin transition layer at
jor axis is simply related tg, . It is therefore convenient 1o the houndariesmoreover, it is not self-evident that a de-
consider rather thin samples, a fact that, however, does n@gription in terms of bulk properties and boundary conditions
allow for a good separation of the bulk properties from thejs allowed for crystals

boundary effects. _ . In the framework of our theory a quantitative account of
The bulk properties are better evidenced by making use dhoth these effects can be done. The computations have been
the phase grating geometry. Therefore, we have considerggkrformed for different values of the parameters of interest:
this geometry to compare the optical rotations given by thencident angle, sample thickness, pitch, and wavelength. We
macroscopic and mesoscopic models. The computationgaye found that effects of typé) are indeed present if the
have been performed for different values of the optic paramMpoundary layers are orthogonal or nearly orthogonal to the

eters p/\, &,, tilt angle, input polarization, and incidence helix axis, i.e., in the homeotropic or nearly homeotropic
anglg. The results can be summarized as follows. geometry.

For the bulk properties, the macroscopic model works
well for any realistic value ot,, despite the fact that only
terms up toe2 have been considered. For what concerns the
pitch, the range of validity of the macroscopic model in the The presence of boundary transition layers is well evi-
grating mode geometry is unexpectedly large, going up talenced by Fig. @), which refers to a sample with the helix
the p value corresponding to the first Bragg peak, as showraxis parallel to the boundary planes. The homogeneous
in Fig. 1. It is obvious that in the Bragg regime, where themodel gives an optical rotation that increases linearly with
Bloch waves of the periodic medium represent standinghe sample thickness. The mesoscopic model, instead, gives
waves, the macroscopithomogeneoysmodels lose any practically no rotation if the sample thickness is small with
meaning. Near the Bragg bands the Boltzmann scaling law iespect to the helix pitch. To account for this effect in the
no longer valid and the role of the higher order terms in theframework of a macroscopic description, we must assume
power series expansion of the functie(p/\) becomes im-  that g, is gradually changing from zergat the sample
portant(similar behavior is found in crystals displaying cir- boundary to the bulk value. Nothing similar has been found

plA P

IV. VALIDITY LIMITS OF THE MACROSCOPIC MODEL:
BOUNDARY EFFECTS

A. Phase grating geometry and transition layer
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FIG. 4. Rotation angle as a function of the normalized sample
thickness forpy=0° (a) and ¢,=220° (b), with the same param-
eters as in Fig. 3. The points and the dotted line, which are nearly
coincident, give the rotation averaged oygrand the rotation com-
puted according to the macroscopic model, respectiyElyrves(a)
and (b) present a fine structure, not fully resolved, of interference

FIG. 3. Rotation angle in the homeotropic geometry as a funcfringes]
tion of the normalized sample thickness and of the phase constant

¢ (which defines the di(r)ection .of .the local optic axiso at the inpUt“boundary” only in the sense thap, defines the direction of
plang, for p=A/3, «=30°, and incidence angle of 40°. the local optic axis at the boundary plare 0 (and at the

~ ~ second boundary plane if the sample contains an integer
for the parameters. and g, . For thin samples, large dis- nymbper of pitches By decreasing the ratip/A we obtain
crepancies between the mesoscopic and the macroscopigrves practically identical to the ones plotted in Figs. 3 and
models are only found for the optical properties related to they 1yt with smaller rotation angles. The optical rotation and
parameteq, , as, for instance, the output ellipticity for input ;i qerivative with respect t@, scale asp/\, according to
TM polarization[Fig. 2(b)]. the Boltzmann law.

This fact has interesting consequences for what concerns Discrepancies between the mesoscopic and macroscopic

the thin film interference patterns. We expect that the PreStodels are also found in the reflectance curves from a semi-

ence of the transition layers at the sample boundaries will__ " : L
lower the amplitudes of the interference fringes. In fact, inInflnlte sample. For a TMor TE) polarized incident beam,

the phase grating mode geometry the interference patterr%?e homogeneo_us model gives a I(I_hl TE? pola_mz_ed re-
: : ected beam since the macroscopic optic axis lies in the
computed on the basis of the exact mesoscopic model ate” : . . .
. . incidence plane. The mesoscopic model, instead, gives in
generally attenuated and disappear completely in some Optl'eneral an elliptic polarization, since the local optic axes
cal conditiond18]. We have not been able to experimentally gear the boundpar planes do n,ot lie in the incider?ce lane
test these effects because the surface interactions cause [h(]a yp P '

helix to unwind in thin cells and because our samples are in € dep.endence .Of the reflectance P4l appears here as
obvious if we consider that a change @f is equivalent to a

rotation of the local optic axes at the boundary planes. Inter-
estingly, agg change has strong effects on the optical prop-
erties related to optical activity, whereas it has generally
small effects for the other optical properties. In fact, the total

The phases of the Fourier components of the Bloch wavemtensity of the reflected beam is practically independent of
are at any point related to the phase ¢+ qz of the peri-  ¢q, as shown by Fig. &), where the curves computed with
odic helical structure of the medium at the same point. Thalifferent values ofp, are practically coincident. On the con-
phase constanp, plays therefore the role of a control pa- trary, the polarization properties depend strongly¢gn as
rameter for these phases. In the homeotropic geometry ttghown by the curves plotted in Figs(bb and Fc), which
phaseg is constant at each boundary plane and a change @fgain scale ap/\. Figure d) shows a newp,-dependent
the phasepy has the same effect as a rotation of the wholeboundary effect, consisting of a small dephasing between
sample with respect to the incidence plane of the light. Weeflected and incident bearfwe recall that the dephasing for
therefore expect a dependence of the optical properties of tHeomogeneous lossless media is equal to zero or to 180°).
actual periodic medium op,, whereas the properties of the  The failure of the homogeneous model can also be under-
homogeneous model are independent of the paramgter stood on the basis of the following argument: consider a
which does not appear in its constitutive equati@@)s-(9). sample in the phase grating oblique geometry. The grating

The dependence of the rotation angle@ngiven by the constant(i.e., the spatial period of the gratings equal to
mesoscopic model is shown in Fig. 3 for an incidence anglg/sind, whered is the angle between the helix axis and the
of 40°. This dependence is very strong for any incidenceboundary normal. For small enough values, the grating
angle. Surprisinglyjt does not decrease by increasing the gives a set of diffracted beamsvhich do not satisfy the
thickness of the samplas shown in Fig. 4. This dependence Bragg law since the grating works in the Raman-Nath re-
must therefore be considered as a true breaking down of thgime). Obviously, no homogeneous model can be used to
homogeneous model, not as a simple boundary effect. It is approximate a grating.

360

any case not perfectly monodomain.

B. Homeotropic geometry and breaking down
of homogeneous model
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FIG. 5. Polarization parametefimtensity, phase, rotation of the

main ellipse axis, and axes ratiof the beam reflected by a semi- . . hi h . imoli
infinite sample with the helix axis orthogonal to the boundarytmp'c geometry(Fig. ). This can have important implica-

planes, as a function of the incident angle for input TM polarizationtions for nonperfect crystals if the long range helical order is

and for different values oby: (a) 30°, (b) 90°, (c) 150°, (d) 210°, oSt (owing to some source of randomngswith different

(e) 270°, and(f) 330° (p=\/4, a=45°, andd=\). correlation lengths in different directions. By comparing
Figs. 2a) and 6, we expect that the optical activity is prac-
tically unchanged if the order is lost along the helix direc-

ion, whereas it decreases if the order is lost in the orthogonal

A failure of the homogeneous model is expected for anyt irection

periodic structure as, for instance, for three-dimensiona
crystals. The fact that no homogeneous model is able to fully
account for the optical properties of crystals is in a sense
obvious. Here, we focus the conditions in which the homo-
geneous models fail. The experiments were performed with the ZKS-2502
It is, however, to be observed that the failure of the maccompound. This compound is in the chiral smedighase
roscopic model involves rather small effects and is particu@t room temperature, with a pitch of about 0.1, filt
larly evident only in the cases where both optical activityangle «=26°, and effective optical anisotropyn=0.16.
(i.e., a nonlocal properjyand the higher order Fourier com- The cells were prepared by enclosing the liquid crystal be-
ponents play an important role. Further, we expect that atween two identically treated glass plates, which were sepa-
averaging of the reflectance and transmittance apgr rated with either evaporated SiO films or Mylar spacers.
which is equivalent to average over the phase constants &amples of different thickness were preparde-@, 2, and
the neglected Fourier components, could restore the validitg.6 wm) in both the homeotropic and the phase grating ge-
of the homogeneous model. Theeraged curveare in fact  ometries, i.e., with the helix axis perpendicular or parallel to
rather well fitted by our homogeneous model, as shown byhe boundary planes, respectively. The homeotropic orienta-
Figs. 4 and 6(indeed, in Ref[1] the homogeneous model tion was obtained by depositing a lecithin layer on the glass
has been defined by averaging oygrthe transfer matrix of plates. To obtain the phase grating orientation, a unidirec-
planar samples, i.e., the matrix relating the field vectrs tional mechanical shear of the cell substrates was applied. A
and H at the sample boundariesThis fact is of the most polarization microscope was used to control the quality of
importance from the experimental point of view. Many the samples and the direction of the helix axis. For the ho-
sources of averaging are always present in actual experineotropic geometry, the helix axis is orthogonal to the
ments(as, for instance, nonperfect flathess of glasses, inhdsoundaries only where the sample appears as uniformly
mogeneous anchoring of the smectic structure, and morklack between crossed polarizers. A more complex analysis
generally nonperfect periodicity due to various defgcts is required to find out the direction of the helix axis, i.e., the
which are expected to become more efficient by decreasingacroscopic optic axis, in the phase grating geometry. We
the pitch of the helical structure or the spatial period of othethave first looked for the direction of the input polarization
periodic media. So, we draw the conclusion that homogewhere the transmittance of the sample between crossed po-
neous models for crystals could work well in actual experi-larizers reaches a minimum. The parallelism between the op-
ments, and even in optical geometries where they are coriic axis and the boundary planes was then ensured by con-
ceptually wrong. The main aim of our experiments is to testidering the symmetry of the transmittance curves under a
this important point. sign change of the incidence angle. The measurements were
Finally, we notice that the boundary effect related to theperformed with a 10 mW He-Ne laseh £0.6328 wm),
presence of a transition layer does not appear in the homeavhich was linearly polarized with a prism polarizer. The

V. EXPERIMENTS
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FIG. 7. 3D representation of the ellipticitgquared ratio of the % (deg)

ellipse axep as a function of the phase constap and of the

normalized thickness. The parameters are the same as in Fig. 5. F|G. 8. Polarization parametefsllipticity and rotation angleof
the transmitted beam as a function of the orientatignof a ho-
meotropic sample, for incident TM polarization: experimental data

outcoming light from the sample was analyzed with a G|an_(circles) and theoretical fisolid lineg for nominal values of the
Thomson polarizer, which could be rotated by a step motofaterial parameters and with a best fit thickness of 4.

with a resolution of 0.05°. The light was detected with a

silicon photodiode whose output signal was sent to a variable . _ _

gain amplifier. The position of minimum and maximum in- Monedomain sample witd=4.14 xm and nominal values

tensities, obtained by rotating the analyzer, correspond to th@f the other parametersolid lines. The estimated experi-
directions of the minor and major axis of the output polar-mental errorsmainly related to the sample defectse of

ization ellipse, respectively, and the intensity ratio gives théhe Same order of magnitude as the differences between the-

square of the axes ratio. The angle between the main axis (glretical_and experimental curves. We ha\_/e therefore at the
the ellipse and the polarization direction of the incident lightS@me time proved the rather good quality of the sample

is considered as the rotation angle. preparation procedur@gemember that any source of defects
Curves giving the square of the axes rdgdiipticity) and ~ @lways gives some type of averaging ovgj), the validity
the rotation angle as a function of the incident angle and th&f the mesoscopic model and the failure of the macroscopic

input polarization direction were obtained and compared tgnodels.
the theoretical curves given by the mesoscopic mdeei
ach. A best fit procedure of these measurements is not only a VI. CONCLUSIONS

test of the validity of the model, but also a way to obtain all A areat emphasis has been aiven in the literature to the
the optical parameters of the liquid crystal céhickness, ~ 9 P 9 X L
optical properties of cholesteric and chiral smectic liquid

pitch, tilt angle, birefringence, and phase constag}. In : . ) o
fact, our computations reveal that the output ellipticity showscrrySt::Eggr;'%h;frt?]gag:rt:;g tiarl?:%é?e i?]?g;(ez)t(iﬁ’ s;r;]%e éggst?e
a strong dependence on all these parameters. An evidence PP y 9

this property is shown in Fig. 7, which is athree-dimensionalexmess.eOl by simple anal)_/tlc expressnﬁ_ﬂ]%]. The optlc_:al
olot of the ellipticity as a function of the phase constagt properties of the now available short-pitch cholesteric and

and of the normalized thicknesp for liaht at normal in- chiral smectics are even simpler for any direction of the light
X P 9 . beam, since the periodic helical structure can be considered
cidence on a perfect homeotropic sample. In this case,

change ine~ can be obtained by rotating the input polariza- s a homogeneous uniaxial medighere referred to as the
tion ogr thegpsoam le around its ngrmal eguivalenlijl IIC—)|owevermaCrOSCOpiC modgl whose optical properties can be de-

mp . €4 Y- - scribed by the same constitutive equations valid for usual
further experiments and an improvement of the preparatio

r(1_rystals[1]. Two different and equivalent sets of constitutive

procedure of the samples are required for a precise OIEEtermcl,wquations have been considered, making use of the Landau

nation of the material parameters. Our homeotropic sample nd Post formalism. In the first set, the bulk properties are

are instead good enough to evidence the important effec . ~ .
discussed in Sec. IV B, i.e., the fact that a simple rotation of/€Scribed by a complex tenserand the tangential compo-

the sample around its macroscopic optic axis drasticallynents ofH are discontinuous. So we have preferred to make
changes the transmittance. This is shown in Fig. 8, whictuse of the Post equations, where the bulk properties are de-
refers to a sample with nominal thickneds=4 um. The scribed by two real tensoks and x, and the boundary con-
experimental points obtained by a sample rotatioincles ditions are expressed by the usual requirement of continuity
are rather well fitted by the theoretical curves computed orfor the tangential components of the vect&randH and for

the basis of the mesoscopic model, by assuming a perfectiyhe normal components of the vect@@sandD. In both sets
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only three scalar parameters appear, which are simply relateaf the macroscopic model is due to the fact that it neglects
to the parameters defining the periodic structinederred to  the higher order Fourier components, since the rotation shifts
as the mesoscopic model, which in our theory plays the roléhe phases of all these components. An averaging over the
of the microscopic models for usual cryspals general, the rotation angle is therefore equivalent to an averaging over
symmetry class requires four parameters, which are the twie phases of the neglected components, a procedure that
dielectric constants =3, andEc,:EH appearing ine, and restores the validity of the macroscopic model. It is impor-

the two correspondin rotropic parametarsanda. ap- tant to observe that other sources of phase averaging are
L P g gyrotropic p g[sandg, ap always present in actughonperfect crystals, which again
pearing iny. In our caseg) is equal to zero. This means that

4 - _could restore the validity of the macroscopic model. On the
the well known pseudorotatory power of cholesteric and chiyasis of the above discussion we can presume that the mac-

ral smecticE liquid crystals for light propagating along the roscopic models universally used in optics for usual crystals
helix axis goes to zero in the limit of short pitches. The could similarly fail if the crystal boundaries are coincident
optical rotation is only given by, , and is therefore maxi- with the lattice planes and the surfaces are perfectly flat with-
mum for light propagating orthogonally to the helix axis. out too many defects.
The dependence @f, on the pitchp and on the tilt anglex We conclude with some further comments. A few years
is such that the rotation rate scalesma? and is propor- after the discovery of optical activity, Fresnel was able to
tional to sirf(2a). The optical activity is thus practically ab- explain the effect by simply assuming circular birefringence,
sent in short-pitch cholesterics, where=90°. i.e., different refractive indices for left and right circular po-
The central point of our research is the discussion of thdarizations. By analogy with the helical morphology of cir-
limits of validity of macroscopic models, by considering as cularly polarized waves, he suggested a helixlike structure
exact the mesoscopic one. The main interest of the researdr optically active medid20]. The advent of x-ray diffrac-
is connected to the difficulty in inserting optical activity in tion techniques offered the possibility to experimentally test
any macroscopic description of matter. In fact the opticalFresnel’'s hypothesis for usual crystals. A different way to
activity is one of the optical effecighe most important one test the same hypothesis is given by cholesteric liquid crys-
arising from the molecular structure of matter, and is theretals, whose morphology is exactly the same as the one of
fore hardly accommodated in the framework of a “con- circularly polarized light. As well known, a cholesteric
tinuum” theory, which neglects the molecular structure. Wesample is indeed able to rotate the polarization plane of light,
have shown that this difficulty is something more than abut this effect is not the same as for usual optically active
hypothetical paradox and focused on the point where thenedia[21,22. Further, the rotation becomes practically zero
macroscopic description can fail. We recall here the mosif we extrapolate the cholesteric pitch to molecular dimen-
important points. sions. Only in the last years it has been shown that the helical
The macroscopic model has been derived by consideringmecticlike phases display true rotatory power. Fresnel's hy-
the limit p<<\, but for the nongyrotropic properties it works pothesis is now confirmed, but certainly not in the sense he
well in any optical geometry up tp~\/5. Instead, it fails expected, since the helical structure gives optical rotation for
seriously for the gyrotropic properties of chiral smectics inlight propagating orthogonally to the helix. Once again, the
the homeotropic geometrfor any value of the pitch and for study of liquid crystals greatly helps our understanding of
any thickness of the sampl&ccording to any homogeneous basic physics.
model, a rotation of the sample around the macroscopic optic We have considered chiral smec@c-liquid crystals,
axis (which is orthogonal to the boundary plahdsas no which represent the first example of media whose optical
effect on the transmittance and reflectance. On the contraryptation is described by simple analytic expressions. We ex-
a rotation of the actual periodic sample changes the amplipect that similar expressions will be found for other media,
tudes of the transmitted and reflected beams and could eveand in particulal) for smecticlike structures, similar to the
change the sign of the optical rotatigthis important fact cholestericlike structures, recently studied by Lakhtakia and
has been proved both theoretically and experimentalljis ~ co-workers[23,24]; (2) for helixlike structures appearing in
means that no homogeneous model is able to describe thematics undergoing a Meyg25] or Pikin [26] type Fred-
optical activity of the periodic medium. It is already known ericksz phase transition, where the direction of the helix axis
[19] that different macroscopic models for gyrotropic mediaand the grating wave vector are orthogofhereas inS;
can give different reflection coefficients, a fact that reflectshey are paralle] (3) for the recently discovered twist grain
the difficulty of finding out the correct boundary conditions boundary(TGB) phase$27,2§, which display discrete rota-
for such models. According to our computations, the discreption of the optic axis along a given directio@) for two- and
ancies among the different models are generally small athree-dimensional helixlike structures, as, for instance, the
compared to the discrepancies between any one of the modnes appearing in the Blug9] and in the TGBC [27]
els and the actual periodic medium. phases. The existence of a second helical ordering in these
Interestingly, by averaging the amplitudes of the transmittwo last structures gives rise therefore to an intermediate
ted and reflected waves given by the mesoscopic model ovelomplexity between the one-dimensional and the three-
the rotation anglepy, we obtain practically the same ampli- dimensional periodicity, allowing for a further step towards
tudes as those given by the macroscopic model. The failurthe optics of usual crystals.
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