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Optic models for short-pitch cholesteric and chiral smectic liquid crystals
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The optical properties of cholesteric and chiral smectic-C liquid crystals having a pitch shorter than the light
wavelength are studied, both theoretically and experimentally. A particular emphasis is placed on the optical
activity. For smectics, the optical rotation is maximum for a tilt angle of 45° and for light propagating
orthogonally to the helix axis; for short-pitch cholesterics, the optical activity is, in any case, very small. The
limits of validity of a recently proposed macroscopic model for such media are discussed, in the framework of
a more general discussion on optical models for gyrotropic media. It is shown that the macroscopic models
generally work well for the bulk properties. However, for chiral smectics with the smectic planes parallel or
nearly parallel to the boundary planes, no homogeneous model is able to account for the gyrotropic properties,
independently of how small the pitch is and for any sample thickness. Our experimental data are in agreement
with these theoretical findings.@S1063-651X~98!05509-3#

PACS number~s!: 61.30.2v, 78.20.Ek, 78.20.Bh
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I. INTRODUCTION

In most liquid crystal~LC! compounds the molecules a
strongly elongated, and some periodic LC phases are kn

where the average directionn̂ ~nematic director! of the long
molecular axes rotates uniformly along a given directio
describing a helix. If the helix pitch is smaller than the lig
wavelength, the periodic medium can be convenien
treated in optics as macroscopically homogeneous, as u
for crystals. Recently, a macroscopic optical model for sh
pitch chiral smectic-C liquid crystals (Sc* ) has been sug
gested@1#, which also is valid for other LC phases having t
sameC2 element of symmetry (SI* , SF* , andSK* ), and in-
cludes as a particular case the cholesteric (N* ) phase. The
macroscopic effective medium is uniaxial, with the optic a
along the helix axis of the periodic structure, and is optica
active.

Here, a critical discussion of the model is given. It will b
shown that with minor changes concerning its constitut
equations, the model can be successfully applied to the a
ally available short-pitchN* andSc* compounds, except fo
some very particular optical geometries. This fact could its
motivate our investigations, owing to the increasing inter
of such compounds in applications@2,3#. However, our main
motivation goes beyond the optics of LCs and refers to ba
optics. In fact, the search of a macroscopic model for o
cally active crystals is still an open problem, since this pro
erty is hardly incorporated in the framework of homog
neous models, in particular for crystals with a long ran
order. Here we recall some of the difficulties found in a
macroscopic description of optical activity.

~1! A first difficulty comes from the fact that optical ac
tivity is only displayed by dissymmetric~chiral! objects. The
models used to represent optical activity are therefore ra
complicated and require heavy numerical computations.
different molecular models suggested different constitut
PRE 581063-651X/98/58~3!/3264~9!/$15.00
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equations, relating the vectorsE, D, B, andH, and defining
the macroscopic properties of the medium. A surprisin
large number of constitutive equations are indeed found
the literature and actually used. This fact is perhaps the m
source of confusion for nonspecialists~and for specialists
too!. For a review, see Refs.@4–6#.

~2! A more substantial difficulty comes from the fact th
optical activity is a nonlocal property, depending explicit
on the molecular sizea. In particular, the circular birefrin-
gence of isotropic media~which is proportional to the optica
rotation along a path of one wavelength! scales asa/l, as
first recognized by Boltzmann@7# on the basis of a molecula
model. The optical rotation per unit length, i.e., the rotato
power, scales therefore asa/l2. The higher order powers o
the Boltzmann ratioa/l are generally negligible, sincea
!l. For anisotropic media the nonlocality of the dielectr
properties gives rise to spatial dispersion, namely, to the
pendence of the gyrotropic parameters on both the mod
and the direction of the light wave vector. The usual fr
quency dispersion, which is neglected here for the sake
simplicity, gives an additionall dependence to the simpl
a/l2 law for the rotatory power.

For gyrotropic crystals we have a further characteris
length, namely, the spatial periodicityp, and hence a contri-
bution scaling asp/l can appear. For the actually availab
chiral smectics, this contribution is dominant, sincep@a,
and the higher order powers of the Boltzmann ratiop/l play
a non-negligible role. For the helical-shaped LC phases
optical model is universally used where the molecular str
ture is neglected and the optical properties are defined
means of a local dielectric tensor«(r ). Since we consider
only short-pitch compounds, this model plays in our theo
the role of amesoscopic model.

~3! For periodic media the main difficulty comes from th
fact that the eigenwaves within the medium are Bloch wav
whose Fourier components represent plane waves ha
3264 © 1998 The American Physical Society
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wave vectorsk1q, where q is a vector of the reciproca
lattice. A macroscopic model is obtained by considering o
the zeroth-order Fourier component and neglecting the
fects of the higher order ones. Unfortunately, the amplitu
of the neglected components is not negligible for actual cr
tals @8,9#. Despite this fact, no experimental evidence o
possible role of the neglected Fourier components has b
found to date. To explain this, we recall that the higher or
Fourier components give rise to a fine structure of the e
tromagnetic field within the crystal cells, which often h
negligible influence on optical experiments, where only
average~macroscopic! field is of interest.

The above quoted problems are well known and h
been discussed for a long time in the literature~see, for in-
stance, Refs.@8,9#!. We approach here the same problems
the basis of the fact that a mesoscopic and a macrosc
model for the same medium are now available, both defi
by fully analytic and very simple constitutive equations. A
far as we know, nothing similar can be found in the liter
ture, at least for gyrotropic media, and all the previous d
cussions concerning the limits of validity of macroscop
models are based on qualitative or semiquantitative a
ments. Here we give, instead, a fully quantitative analy
Our attention will be concentrated on the possible failure
the macroscopic homogeneous model, considering as exac
the mesoscopicone ~periodic!. As already stated, in som
particular geometries strong discrepancies are indeed fo
In all these cases our experiments confirm the full validity
the mesoscopic model.

II. THE MODELS

A. Mesoscopic model

In the mesoscopic model, the chiral smectic is assume
be a continuous periodic medium that is locally uniaxi
nonmagnetic, and nongyrotropic. The optic axis is paralle
the nematic directorn̂, which is uniformly rotating alongz in
such a way that its components are given by

nx5sin a cos~qz1w0!,

ny5sin a sin~qz1w0!, ~1!

nz5cosa,

wherea is the tilt angle,q52p/p, and the phase constan
w0 defines the direction ofn̂ at the planez50, which in our
experiments is considered as the first boundary of
sample. In the two limiting casesa50 anda5p/2 we ob-
tain a nongyrotropic homogeneous medium and a choles
liquid crystal, respectively.

The optical properties of the mesoscopic model are fu
defined by the real dielectric tensor

«5«o1«an̂~z!n̂~z!, ~2!

where «a is the local dielectric anisotropy, defined as t
difference«e2«o between the principal values of«. The
components of the tensor«(z) are periodic functions ofz,
with period equal to the helix pitch.
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The magnetic polarizability of actually available com
pounds is negligibly small, whereas their local biaxiality a
gyrotropy are in general non-negligible, having the same
der of magnitude as for usual crystals. However, their infl
ence on the optical properties of the smectic samples con
ered here is very small. The intrinsic optical activity~coming
from the chirality of the individual molecules! gives non-
negligible effects only in the limit where the pitch becom
comparable to the atomic size. Even in this limit, it is inte
esting to find out and discuss the optical activity comi
from the helical arrangement of the molecules.

B. Landau-type constitutive equations
for the macroscopic model

A macroscopic model for short-pitch chiral smectics h
been derived in Ref.@1# in the framework of the theory o
spatial dispersion, by making use of the Landau-Lifshitz f
malism @10#. For harmonic plane waves the constitutiv
equations are written as

D̃5 «̃«0E, ~3a!

B5m0H̃, ~3b!

where the vectorsE, D̃, B, andH̃ are the effective values o
the fields. In a perturbation expansion where only line
terms of the parameters«a

2 and p/l are considered, the ef
fective permittivity tensor is given by

«̃5S «̃o 0 0

0 «̃o 0

0 0 «̃e

D 1 ig'S 0 0 2my

0 0 mx

my 2mx 0
D , ~4!

where

«̃e5«o1«a cos2a, «̃o5«o~11«e / «̃e!/2, ~5!

g'52
p

l

«a
2

8«̃e

sin2~2a!, ~6!

andm5k/k0 , wherek is the wave vector of the considere
plane wave within the sample,k052p/l, and l is the
vacuum wavelength. The fact that«̃ explicitly depends onk
means that the medium displays spatial dispersion.

The effective homogeneous medium defined by Eqs.~4!–
~6! is uniaxial and its optic axis is coincident with the hel
axis. The real part of the permittivity tensor«̃ displays the
typical structure of uniaxial media with only two scalar p
rameters«̃e and «̃o . A similar behavior is in general exhib
ited by the imaginary part of uniaxial gyrotropic media~and
more precisely by the crystal classesCn , Dn , with n.2),
with two parametersgi andg' related to the components o
the vectork parallel and orthogonal to the optic axis, respe
tively. The absence ofmz5kz /k0 in Eq. ~4! means that, for
what concerns the considered homogeneous model, the
allel componentgi is equal to zero. The optical activity i
thus zero for light propagating along the helix axis a
reaches its maximum value for light propagatingorthogo-
nally to the helix axis.
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The gyrotropy parameterg' is maximum fora545°, and
zero fora50° anda590°. Within the approximation of the
model, the optical activity of cholesteric LCs is therefo
zero, since their tilt angle is exactly 90°.

C. Post-type constitutive equations

The constitutive equations~3! are indeed very simple, bu
their simplicity has rather heavy counterparts. In particu
within gyrotropic media a new term must be added toE
3H to obtain a Poynting vectorS having the meaning o
power flux density@11,12#. The continuity of the norma
component of this vector at the sample boundaries implie
discontinuity of the tangential components of the field ve
tors E or H. New boundary-type equations are therefore
quired to fully define the optical properties of the sample

A discontinuity ofB @and, from Eq.~3b!, also ofH] im-
plies the presence of a surface density currentj s. The pres-
ence of such a current, related to a bulk magnetizationM , is
strongly suggested by the fact that within any dielectric he
the polarization current gives rise to a magnetic dipole m
ment. The simplicity of the Landau formalism is due to t
fact that the magnetization currentjM5¹3M is incorpo-
rated into the main currentj P5]P̃/]t. In the bulk, this is
always allowed, since Maxwell’s equations remain u
changed under the transformation]P̃/]t5]P/]t1¹3M , if
we accordingly define new vectorsH̃ andD̃. Obviously, this
transformation gives a different set of constitutive equatio
One of the difficulties quoted in the Introduction is related
this fact, namely, to the difficulty in separating the effects
]P/]t and¹3M .

A possible way to escape the above difficulty is to impo
the continuity of the Poynting vector at the boundary surfa
It is, however, preferable to make use of a different set
constitutive equations. In the following we make use of t
equations derived by Post@13# under the requirement of rela
tivistic covariance of all the equations used to describe
electromagnetic field, without using any microscopic mo
els. For nonmagnetic lossless materials the Post equa
can be written as

D5««0E1x«0cB, ~7a!

H52x†«0cE1m0
21B. ~7b!

In the bulk, the equation systems~3! and ~7! become
equivalent by assuming

«5 «̃1R2, ~8a!

x5 iR, ~8b!

where

R5S 0 0 0

0 0 0

0 0 g'
D . ~9!

For nonchiral mediax50 and «̃5«. The two sets of
equations then become identical, and in the absence
r,
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losses, the permittivity« is real and symmetric. The optica
activity of gyrotropic lossless media is therefore related
the pseudotensorx and to the imaginary part of the tensor«̃,
which in this case is complex and Hermitian. The bulk co
stitutive Eq. ~7!, in contrast to Eqs.~3!, are self-consisten
with the usual assumptions of continuity for the compone
of the vectorsB, E, D, andH ~tangential continuity forE and
H and normal continuity forB andD!.

III. VALIDITY LIMITS OF THE MACROSCOPIC MODEL:
BULK EFFECTS

To test the validity of the macroscopic model, we ha
considered the transmittance and the reflectance of a LC
confined between two parallel planes, and compared the
ues given by the macroscopic and mesoscopic models,
particular attention to the polarization properties related
the optical activity. For the mesoscopic model, we have c
sidered samples with the helix axis orthogonal to the bou
ary planes~homeotropic geometry! and samples with the he
lix axis parallel or obliquely oriented with respect to th
boundary planes~phase grating geometry!. In the first case,
the periodic structure can be considered as an anisotr
stratified medium and the computations are performed
making use of the basic Berreman formalism@14#. In the
other cases, an extended Berreman formalism, develope
find out the efficiencies of anisotropic gratings@15,16#, has
been used. Forp.l the structure indeed acts as a pha
grating, giving rise to diffracted beams. By decreasing
pitch, the diffraction angle of the higher order diffracte
waves increases, and when the angle reaches 90° t
waves become evanescent. For small enoughp values only
the zeroth-order transmitted and reflected beams surv
However, the presence of evanescent waves cannot be
glected in computations.

The most important discrepancies between the me
copic and macroscopic models are related to boundary
effects and will be considered in Sec. IV. In this section
consider some bulk effects, related to the fact that our m
roscopic model neglects higher order terms inp/l and«a .

We recall that gyrotropic crystals display pure optical r
tation only for light propagating along the optic axis. In an
other direction the medium transforms linear into elliptic p
larization, but the presence of the gyrotropy has only sm
effects on most optical properties.

Let us first consider the case of a light beam parallel to
optic axis. The macroscopic model does not give optical
tation, sincegi50. This property is quite unexpected, sin
for p.l, cholesterics and chiral smectic LCs display a hu
pseudorotatory power for light propagating along to the he
axis, according to de Vries’ equations@17#. A residual circu-
lar birefringence for light propagating along the helix ax
survives forp,l, but it decreases quickly by decreasing t
ratio p/l. More precisely, the rotatory power along the he
decreases two orders of magnitude if the internal wavelen
changes fromp ~namely at the Bragg reflection band! to 2p.
For higherl values, it decreases asl24, and becomes neg
ligible to any practical purpose forl.5p. In the limit p
!l, the quantitygi is in any case not exactly zero, bu
scales as (p/l)3.

To test the effects ofg' , we must consider light beam
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orthogonal or obliquely oriented with respect to the op
axis. These cases require a more complex analysis. We
computed the ellipticity and the directions of the ellipse ax
of the transmitted and reflected beams for linear input po
ization. Only for thin enough samples the polarization of t
transmitted beam is nearly linear and the rotation of the m
jor axis is simply related tog'. It is therefore convenient to
consider rather thin samples, a fact that, however, does
allow for a good separation of the bulk properties from t
boundary effects.

The bulk properties are better evidenced by making us
the phase grating geometry. Therefore, we have consid
this geometry to compare the optical rotations given by
macroscopic and mesoscopic models. The computat
have been performed for different values of the optic para
eters (p/l, «a , tilt angle, input polarization, and incidenc
angle!. The results can be summarized as follows.

For the bulk properties, the macroscopic model wo
well for any realistic value of«a , despite the fact that only
terms up to«a

2 have been considered. For what concerns
pitch, the range of validity of the macroscopic model in t
grating mode geometry is unexpectedly large, going up
the p value corresponding to the first Bragg peak, as sho
in Fig. 1. It is obvious that in the Bragg regime, where t
Bloch waves of the periodic medium represent stand
waves, the macroscopic~homogeneous! models lose any
meaning. Near the Bragg bands the Boltzmann scaling la
no longer valid and the role of the higher order terms in
power series expansion of the function«(p/l) becomes im-
portant~similar behavior is found in crystals displaying ci

FIG. 1. Rotation angles of the major axis of the output ellip
polarization for normally incident light linearly polarized along~a!
and orthogonally~b! to the helix axis, and corresponding ratio
between the intensity along the minor and the major axes of
ellipse @~c! and ~d!#, for the helical periodic medium~solid lines!
and for its macroscopic model~dotted lines!. The sample is in the
grating mode geometry~helix axis parallel to the boundary plane!
with tilt angle a545° and thicknessd52l. Here, and in all the
subsequent figures, the principal refractive indices arene51.66 and
no51.5.
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cular dichroism around an absorption line!. At lower p val-
ues, our computations suggest that the first neglected ter
the expression ofg' is the one scaling as (p/l)3, which
gives again negligible effects forp,l/5.

IV. VALIDITY LIMITS OF THE MACROSCOPIC MODEL:
BOUNDARY EFFECTS

In the following we will consider two types of boundar
effects, having different origins.

~a! Matter is intrinsically discontinuous and a sample h
never a defined ‘‘boundary surface.’’ This is a trivial obse
vation, but must not be neglected at least for what concer
nonlocal property as optical activity. In our macroscopic d
scription it is convenient to define a thin boundary ‘‘trans
tion layer’’ where the optical properties are changing grad
ally.

~b! The macroscopic models for periodic media negl
the higher order Fourier components of the Bloch wav
whose effects are in principle very long ranged and canno
accounted for by simply considering a thin transition layer
the boundaries~moreover, it is not self-evident that a de
scription in terms of bulk properties and boundary conditio
is allowed for crystals!.

In the framework of our theory a quantitative account
both these effects can be done. The computations have
performed for different values of the parameters of intere
incident angle, sample thickness, pitch, and wavelength.
have found that effects of type~b! are indeed present if the
boundary layers are orthogonal or nearly orthogonal to
helix axis, i.e., in the homeotropic or nearly homeotrop
geometry.

A. Phase grating geometry and transition layer

The presence of boundary transition layers is well e
denced by Fig. 2~a!, which refers to a sample with the heli
axis parallel to the boundary planes. The homogene
model gives an optical rotation that increases linearly w
the sample thickness. The mesoscopic model, instead, g
practically no rotation if the sample thickness is small w
respect to the helix pitch. To account for this effect in t
framework of a macroscopic description, we must assu
that g' is gradually changing from zero~at the sample
boundary! to the bulk value. Nothing similar has been foun

e

FIG. 2. Rotation angles~a! and axes ratios~b! for the same
optical geometry of Fig. 1, as a function of the normalized sam
thickness, for the periodic medium~solid line! and its homogeneous
model ~dotted line!, for a530°, p5l/3, and TM input polariza-
tion.
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for the parameters«̃e and «̃o . For thin samples, large dis
crepancies between the mesoscopic and the macrosc
models are only found for the optical properties related to
parameterg' , as, for instance, the output ellipticity for inpu
TM polarization@Fig. 2~b!#.

This fact has interesting consequences for what conc
the thin film interference patterns. We expect that the pr
ence of the transition layers at the sample boundaries
lower the amplitudes of the interference fringes. In fact,
the phase grating mode geometry the interference patt
computed on the basis of the exact mesoscopic model
generally attenuated and disappear completely in some
cal conditions@18#. We have not been able to experimenta
test these effects because the surface interactions caus
helix to unwind in thin cells and because our samples ar
any case not perfectly monodomain.

B. Homeotropic geometry and breaking down
of homogeneous model

The phases of the Fourier components of the Bloch wa
are at any point related to the phasew5w01qz of the peri-
odic helical structure of the medium at the same point. T
phase constantw0 plays therefore the role of a control pa
rameter for these phases. In the homeotropic geometry
phasew is constant at each boundary plane and a chang
the phasew0 has the same effect as a rotation of the wh
sample with respect to the incidence plane of the light.
therefore expect a dependence of the optical properties o
actual periodic medium onw0 , whereas the properties of th
homogeneous model are independent of the parameterw0 ,
which does not appear in its constitutive equations~3!–~9!.

The dependence of the rotation angle onw0 given by the
mesoscopic model is shown in Fig. 3 for an incidence an
of 40°. This dependence is very strong for any inciden
angle. Surprisingly,it does not decrease by increasing th
thickness of the sample, as shown in Fig. 4. This dependen
must therefore be considered as a true breaking down o
homogeneous model, not as a simple boundary effect. It

FIG. 3. Rotation angle in the homeotropic geometry as a fu
tion of the normalized sample thickness and of the phase con
w0 ~which defines the direction of the local optic axis at the inp
plane!, for p5l/3, a530°, and incidence angle of 40°.
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‘‘boundary’’ only in the sense thatw0 defines the direction of
the local optic axis at the boundary planez50 ~and at the
second boundary plane if the sample contains an inte
number of pitches!. By decreasing the ratiop/l we obtain
curves practically identical to the ones plotted in Figs. 3 a
4, but with smaller rotation angles. The optical rotation a
its derivative with respect tow0 scale asp/l, according to
the Boltzmann law.

Discrepancies between the mesoscopic and macrosc
models are also found in the reflectance curves from a se
infinite sample. For a TM~or TE! polarized incident beam
the homogeneous model gives a TM~or TE! polarized re-
flected beam since the macroscopic optic axis lies in
incidence plane. The mesoscopic model, instead, give
general an elliptic polarization, since the local optic ax
near the boundary planes do not lie in the incidence pla
The dependence of the reflectance onw0 appears here a
obvious if we consider that a change ofw0 is equivalent to a
rotation of the local optic axes at the boundary planes. In
estingly, aw0 change has strong effects on the optical pro
erties related to optical activity, whereas it has genera
small effects for the other optical properties. In fact, the to
intensity of the reflected beam is practically independent
w0 , as shown by Fig. 5~a!, where the curves computed wit
different values ofw0 are practically coincident. On the con
trary, the polarization properties depend strongly onw0 , as
shown by the curves plotted in Figs. 5~b! and 5~c!, which
again scale asp/l. Figure 5~d! shows a neww0-dependent
boundary effect, consisting of a small dephasing betw
reflected and incident beams~we recall that the dephasing fo
homogeneous lossless media is equal to zero or to 180°

The failure of the homogeneous model can also be un
stood on the basis of the following argument: conside
sample in the phase grating oblique geometry. The gra
constant~i.e., the spatial period of the grating! is equal to
p/sind, whered is the angle between the helix axis and t
boundary normal. For small enoughd values, the grating
gives a set of diffracted beams~which do not satisfy the
Bragg law since the grating works in the Raman-Nath
gime!. Obviously, no homogeneous model can be used
approximate a grating.

-
nt

t

FIG. 4. Rotation angle as a function of the normalized sam
thickness forw050° ~a! andw05220° ~b!, with the same param-
eters as in Fig. 3. The points and the dotted line, which are ne
coincident, give the rotation averaged overw0 and the rotation com-
puted according to the macroscopic model, respectively.@Curves~a!
and ~b! present a fine structure, not fully resolved, of interferen
fringes.#
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A failure of the homogeneous model is expected for a
periodic structure as, for instance, for three-dimensio
crystals. The fact that no homogeneous model is able to f
account for the optical properties of crystals is in a se
obvious. Here, we focus the conditions in which the hom
geneous models fail.

It is, however, to be observed that the failure of the m
roscopic model involves rather small effects and is parti
larly evident only in the cases where both optical activ
~i.e., a nonlocal property! and the higher order Fourier com
ponents play an important role. Further, we expect that
averaging of the reflectance and transmittance overw0 ,
which is equivalent to average over the phase constant
the neglected Fourier components, could restore the vali
of the homogeneous model. Theaveraged curvesare in fact
rather well fitted by our homogeneous model, as shown
Figs. 4 and 6~indeed, in Ref.@1# the homogeneous mode
has been defined by averaging overw0 the transfer matrix of
planar samples, i.e., the matrix relating the field vectorsE
and H at the sample boundaries!. This fact is of the most
importance from the experimental point of view. Man
sources of averaging are always present in actual exp
ments~as, for instance, nonperfect flatness of glasses, in
mogeneous anchoring of the smectic structure, and m
generally nonperfect periodicity due to various defec!,
which are expected to become more efficient by decrea
the pitch of the helical structure or the spatial period of ot
periodic media. So, we draw the conclusion that homo
neous models for crystals could work well in actual expe
ments, and even in optical geometries where they are c
ceptually wrong. The main aim of our experiments is to t
this important point.

Finally, we notice that the boundary effect related to t
presence of a transition layer does not appear in the hom

FIG. 5. Polarization parameters~intensity, phase, rotation of th
main ellipse axis, and axes ratio! of the beam reflected by a sem
infinite sample with the helix axis orthogonal to the bounda
planes, as a function of the incident angle for input TM polarizat
and for different values ofw0: ~a! 30°, ~b! 90°, ~c! 150°, ~d! 210°,
~e! 270°, and~f! 330° (p5l/4, a545°, andd5l).
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tropic geometry~Fig. 6!. This can have important implica
tions for nonperfect crystals if the long range helical orde
lost ~owing to some source of randomness!, with different
correlation lengths in different directions. By comparin
Figs. 2~a! and 6, we expect that the optical activity is pra
tically unchanged if the order is lost along the helix dire
tion, whereas it decreases if the order is lost in the orthogo
direction.

V. EXPERIMENTS

The experiments were performed with the ZKS-25
compound. This compound is in the chiral smectic-C phase
at room temperature, with a pitch of about 0.17mm, tilt
angle a526°, and effective optical anisotropyDñ50.16.
The cells were prepared by enclosing the liquid crystal
tween two identically treated glass plates, which were se
rated with either evaporated SiO films or Mylar space
Samples of different thickness were prepared (d54, 2, and
1.6 mm) in both the homeotropic and the phase grating
ometries, i.e., with the helix axis perpendicular or parallel
the boundary planes, respectively. The homeotropic orie
tion was obtained by depositing a lecithin layer on the gl
plates. To obtain the phase grating orientation, a unidir
tional mechanical shear of the cell substrates was applie
polarization microscope was used to control the quality
the samples and the direction of the helix axis. For the
meotropic geometry, the helix axis is orthogonal to t
boundaries only where the sample appears as unifor
black between crossed polarizers. A more complex anal
is required to find out the direction of the helix axis, i.e., t
macroscopic optic axis, in the phase grating geometry.
have first looked for the direction of the input polarizatio
where the transmittance of the sample between crossed
larizers reaches a minimum. The parallelism between the
tic axis and the boundary planes was then ensured by
sidering the symmetry of the transmittance curves unde
sign change of the incidence angle. The measurements
performed with a 10 mW He-Ne laser (l50.6328 mm),
which was linearly polarized with a prism polarizer. Th

FIG. 6. Rotation angles as a function of the normalized sam
thickness averaged overw0 ~full line! for the same optical geometr
and the same parameters as in Fig. 3, and the corresponding a
given by the homogeneous model~dotted line!.
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outcoming light from the sample was analyzed with a Gla
Thomson polarizer, which could be rotated by a step mo
with a resolution of 0.05°. The light was detected with
silicon photodiode whose output signal was sent to a varia
gain amplifier. The position of minimum and maximum i
tensities, obtained by rotating the analyzer, correspond to
directions of the minor and major axis of the output pol
ization ellipse, respectively, and the intensity ratio gives
square of the axes ratio. The angle between the main ax
the ellipse and the polarization direction of the incident lig
is considered as the rotation angle.

Curves giving the square of the axes ratio~ellipticity! and
the rotation angle as a function of the incident angle and
input polarization direction were obtained and compared
the theoretical curves given by the mesoscopic model~ex-
act!. A best fit procedure of these measurements is not on
test of the validity of the model, but also a way to obtain
the optical parameters of the liquid crystal cell~thickness,
pitch, tilt angle, birefringence, and phase constantw0). In
fact, our computations reveal that the output ellipticity sho
a strong dependence on all these parameters. An eviden
this property is shown in Fig. 7, which is a three-dimensio
plot of the ellipticity as a function of the phase constantw0
and of the normalized thicknessd/p for light at normal in-
cidence on a perfect homeotropic sample. In this cas
change inw0 can be obtained by rotating the input polariz
tion or the sample around its normal, equivalently. Howev
further experiments and an improvement of the prepara
procedure of the samples are required for a precise dete
nation of the material parameters. Our homeotropic sam
are instead good enough to evidence the important ef
discussed in Sec. IV B, i.e., the fact that a simple rotation
the sample around its macroscopic optic axis drastic
changes the transmittance. This is shown in Fig. 8, wh
refers to a sample with nominal thicknessd54 mm. The
experimental points obtained by a sample rotation~circles!
are rather well fitted by the theoretical curves computed
the basis of the mesoscopic model, by assuming a perfe

FIG. 7. 3D representation of the ellipticity~squared ratio of the
ellipse axes! as a function of the phase constantw0 and of the
normalized thickness. The parameters are the same as in Fig.
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monodomain sample withd54.14 mm and nominal values
of the other parameters~solid lines!. The estimated experi
mental errors~mainly related to the sample defects! are of
the same order of magnitude as the differences between
oretical and experimental curves. We have therefore at
same time proved the rather good quality of the sam
preparation procedure~remember that any source of defec
always gives some type of averaging overw0), the validity
of the mesoscopic model and the failure of the macrosco
models.

VI. CONCLUSIONS

A great emphasis has been given in the literature to
optical properties of cholesteric and chiral smectic liqu
crystals for light propagating along the helix axis, since tho
properties are at the same time very interesting and can
expressed by simple analytic expressions@17#. The optical
properties of the now available short-pitch cholesteric a
chiral smectics are even simpler for any direction of the lig
beam, since the periodic helical structure can be conside
as a homogeneous uniaxial medium~here referred to as the
macroscopic model!, whose optical properties can be d
scribed by the same constitutive equations valid for us
crystals@1#. Two different and equivalent sets of constitutiv
equations have been considered, making use of the Lan
and Post formalism. In the first set, the bulk properties
described by a complex tensor«̃ and the tangential compo

nents ofH̃ are discontinuous. So we have preferred to ma
use of the Post equations, where the bulk properties are
scribed by two real tensors« andx, and the boundary con
ditions are expressed by the usual requirement of contin
for the tangential components of the vectorsE andH and for
the normal components of the vectorsB andD. In both sets

. FIG. 8. Polarization parameters~ellipticity and rotation angle! of
the transmitted beam as a function of the orientationw0 of a ho-
meotropic sample, for incident TM polarization: experimental d
~circles! and theoretical fit~solid lines! for nominal values of the
material parameters and with a best fit thickness of 4.14mm.
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only three scalar parameters appear, which are simply rel
to the parameters defining the periodic structure~referred to
as the mesoscopic model, which in our theory plays the
of the microscopic models for usual crystals!. In general, the
symmetry class requires four parameters, which are the
dielectric constants«̃e5 «̃' and «̃o5 «̃ i appearing in«, and
the two corresponding gyrotropic parametersgi andg' ap-
pearing inx. In our case,gi is equal to zero. This means th
the well known pseudorotatory power of cholesteric and c
ral smectic-C liquid crystals for light propagating along th
helix axis goes to zero in the limit of short pitches. T
optical rotation is only given byg' , and is therefore maxi-
mum for light propagating orthogonally to the helix axi
The dependence ofg' on the pitchp and on the tilt anglea
is such that the rotation rate scales asp/l2 and is propor-
tional to sin2(2a). The optical activity is thus practically ab
sent in short-pitch cholesterics, wherea590°.

The central point of our research is the discussion of
limits of validity of macroscopic models, by considering
exact the mesoscopic one. The main interest of the rese
is connected to the difficulty in inserting optical activity
any macroscopic description of matter. In fact the opti
activity is one of the optical effects~the most important one!
arising from the molecular structure of matter, and is the
fore hardly accommodated in the framework of a ‘‘co
tinuum’’ theory, which neglects the molecular structure. W
have shown that this difficulty is something more than
hypothetical paradox and focused on the point where
macroscopic description can fail. We recall here the m
important points.

The macroscopic model has been derived by conside
the limit p!l, but for the nongyrotropic properties it work
well in any optical geometry up top'l/5. Instead, it fails
seriously for the gyrotropic properties of chiral smectics
the homeotropic geometry,for any value of the pitch and fo
any thickness of the sample. According to any homogeneou
model, a rotation of the sample around the macroscopic o
axis ~which is orthogonal to the boundary planes! has no
effect on the transmittance and reflectance. On the contr
a rotation of the actual periodic sample changes the am
tudes of the transmitted and reflected beams and could
change the sign of the optical rotation~this important fact
has been proved both theoretically and experimentally!. This
means that no homogeneous model is able to describe
optical activity of the periodic medium. It is already know
@19# that different macroscopic models for gyrotropic med
can give different reflection coefficients, a fact that refle
the difficulty of finding out the correct boundary condition
for such models. According to our computations, the discr
ancies among the different models are generally smal
compared to the discrepancies between any one of the m
els and the actual periodic medium.

Interestingly, by averaging the amplitudes of the transm
ted and reflected waves given by the mesoscopic model
the rotation anglew0 , we obtain practically the same ampl
tudes as those given by the macroscopic model. The fai
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of the macroscopic model is due to the fact that it negle
the higher order Fourier components, since the rotation sh
the phases of all these components. An averaging over
rotation angle is therefore equivalent to an averaging o
the phases of the neglected components, a procedure
restores the validity of the macroscopic model. It is impo
tant to observe that other sources of phase averaging
always present in actual~nonperfect! crystals, which again
could restore the validity of the macroscopic model. On
basis of the above discussion we can presume that the m
roscopic models universally used in optics for usual crys
could similarly fail if the crystal boundaries are coincide
with the lattice planes and the surfaces are perfectly flat w
out too many defects.

We conclude with some further comments. A few yea
after the discovery of optical activity, Fresnel was able
explain the effect by simply assuming circular birefringenc
i.e., different refractive indices for left and right circular po
larizations. By analogy with the helical morphology of ci
cularly polarized waves, he suggested a helixlike struct
for optically active media@20#. The advent of x-ray diffrac-
tion techniques offered the possibility to experimentally t
Fresnel’s hypothesis for usual crystals. A different way
test the same hypothesis is given by cholesteric liquid cr
tals, whose morphology is exactly the same as the one
circularly polarized light. As well known, a cholester
sample is indeed able to rotate the polarization plane of lig
but this effect is not the same as for usual optically act
media@21,22#. Further, the rotation becomes practically ze
if we extrapolate the cholesteric pitch to molecular dime
sions. Only in the last years it has been shown that the he
smecticlike phases display true rotatory power. Fresnel’s
pothesis is now confirmed, but certainly not in the sense
expected, since the helical structure gives optical rotation
light propagating orthogonally to the helix. Once again, t
study of liquid crystals greatly helps our understanding
basic physics.

We have considered chiral smectic-C liquid crystals,
which represent the first example of media whose opt
rotation is described by simple analytic expressions. We
pect that similar expressions will be found for other med
and in particular~1! for smecticlike structures, similar to th
cholestericlike structures, recently studied by Lakhtakia a
co-workers@23,24#; ~2! for helixlike structures appearing in
nematics undergoing a Meyer@25# or Pikin @26# type Fréed-
ericksz phase transition, where the direction of the helix a
and the grating wave vector are orthogonal~whereas inSc*
they are parallel!; ~3! for the recently discovered twist grai
boundary~TGB! phases@27,28#, which display discrete rota
tion of the optic axis along a given direction;~4! for two- and
three-dimensional helixlike structures, as, for instance,
ones appearing in the Blue@29# and in the TGBC* @27#
phases. The existence of a second helical ordering in th
two last structures gives rise therefore to an intermed
complexity between the one-dimensional and the thr
dimensional periodicity, allowing for a further step towar
the optics of usual crystals.
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3272 PRE 58HUBERT, JÄGEMALM, OLDANO, AND RAJTERI
@1# C. Oldano and M. Rajteri, Phys. Rev. B54, 10 273~1996!.
@2# J. Fünfschilling and M. Schadt, Jpn. J. Appl. Phys., Part 135,

5765 ~1996!.
@3# P. Rudquist, L. Komitov, and S. T. Lagerwall, Phys. Rev.

50, 4735~1994!.
@4# E. U. Condon, Mod. Phys.9, 432 ~1937!.
@5# A. Lakhtakia, Selected Papers on Natural Optical Activit,

SPIE Milestones Series Vol. MS15~SPIE, Bellingham, WA,
1991!.

@6# A. Lakhtakia,Beltrami Fields in Chiral Media~World Scien-
tific, Singapore, 1994!.

@7# For a brief review and references, see S. F. Mason,Molecular
Optical Activity and the Chiral Discriminations~Cambridge
University Press, Cambridge, 1982!, p. 18.

@8# V. M. Agranovich and V. L. Ginsburg,Spatial Dispersion in
Crystal Optics and the Theory of Excitons~Wiley, London,
1964!.

@9# V. M. Agranovich and V. L. Ginsburg,Crystal Optics with
Spatial Dispersion and Excitons~Springer-Verlag, Berlin,
1984!.

@10# L. Landau and M. Lifshitz,Electrodynamics of Continuou
Media ~Pergamon, London, 1960!.

@11# H. Chipart, Compt. Rend.178, 1967~1924!.
@12# F. J. Fedorov, Opt. Spectrosc.6, 49 ~1959!.
@13# E. J. Post,Formal Structure of Electromagnetics~North-

Holland, Amsterdam, 1962!.
@14# D. W. Berreman, J. Opt. Soc. Am.62, 502 ~1972!.
@15# K. Rokushima and J. Yamakita, J. Opt. Soc. Am.73, 901

~1983!.
@16# P. Galatola, C. Oldano, and P. B. Sunil Kumar, J. Opt. S

Am. A 11, 1332~1994!.
@17# H. de Vries, Acta Crystallogr.4, 219 ~1951!.
@18# M. Becchi and P. Galatola~unpublished!.
@19# M. P. Siverman, Lett. Nuovo Cimento43, 378 ~1985!; J. Opt.

Soc. Am. A3, 830 ~1986!.
@20# S. F. Mason,Molecular Optical Activity and the Chiral Dis-

criminations~Ref. @7#!, pp. 3–6.
@21# N. Isaert, J. P. Berthault, and J. Billiard, J. Opt.11, 17 ~1980!.
@22# P. G. de Gennes and J. Prost,The Physics of Liquid Crystals

~Clarendon Press, Oxford, 1993!.
@23# A. Lakhtakia and W. S. Weiglhofen, Proc. R. Soc. Londo

Ser. A448, 419 ~1995!.
@24# K. Robble, M. J. Brett, and A. Lakhtakia, Nature~London!

384, 616 ~1996!.
@25# F. Lonberg and R. B. Meyer, Phys. Rev. Lett.55, 718 ~1985!.
@26# S. A. Pikin, Structural Transformations in Liquid Crystal

~Gordon and Breach, New York, 1991!.
@27# S. R. Renn and T. C. Lubensky, Phys. Rev. A38, 2132~1988!.
@28# L. Navailles, P. Barois, and H. T. Nguyen, Phys. Rev. Lett.71,

545 ~1993!.
@29# V. A. Belyakov and V. E. Dmitrienko, Sov. Phys. Usp.28, 535

~1986!.


